# Synthesis of threo-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol and its isomer Yamu Xia* and Yanling Wen <br> College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China 


#### Abstract

The total synthesis of threo-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol and its isomer based on two Stobbe reactions as C-C bond-forming steps used a protected vanillin and diethyl; succinate to give the skeleton of lignan, followed by reduction to afford threo- and meso- $( \pm)$-secoisolariciresinol Both were treated with benzoyl chloride to obtain the natural product threo-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol and Its isomer meso-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol for the first time.


Keywords: lignan, 9,9-dibenzoylsecoisolariciresinol, dibenzylbutane

Lignans are a diverse family of biologically active plant metabolites that contain two phenylpropanoid units as the key structural components. ${ }^{1}$ Lignans are found in all parts of plants, including the roots, stems, leaves, fruit, and seeds and they exhibit a wide range of biological activities. ${ }^{2-5}$ Some natural products have been used medicinally for thousands of years. In many cases, the active principle of lignan-based traditional medicines is not known, and a detailed study of the active principles may provide useful leads in the development of new pharmaceutical agents. ${ }^{6-11}$ In 2009, the new lignan 9,9dibenzoylsecoisolariciresinol (1) was isolated from the aerial parts of Maytenus apurimacensis which belongs to the Celastraceae family and is used in South American folk medicine. 9,9-Dibenzoylsecoisolariciresinol has the classic lignan skeleton and it seems likely that it is formed by metabolism of a naturally occurring lignan in an as yet unproven fashion. ${ }^{12}$

The core of 9,9-dibenzoylsecoisolariciresinol is the dibenzylbutane. A great deal of effort has been put into synthetic work on lignans of this type. ${ }^{13-15}$ Among them, the alkylation of $\beta$-substituted $\gamma$-butyrolactone with an appropriate benzylic halide is the most widely used. ${ }^{16}$ Gezginci reported the synthesis of meso-nordihydroguaiaretic acid from 3,4-dimethoxyphenyl acetone using a low-valency Ti-induced carbonylcoupling reaction of the ketone as the key step. ${ }^{17}$ Rao has described the synthesis of analogues of (-)-saururenin from Saururus cernuus, along with (-)-austrobailignan-5 by regioselective cleavage of the methylenedioxyphenyl groups. ${ }^{18}$

Here, we first report an efficient route for the synthesis of natural product threo-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol (1) and its isomer meso- $\pm$ )-9,9-dibenzoylsecoisolariciresinol (2). The syntheses were based on a strategy involving Stobbe condensation to give the skeleton of the lignan, and the resolution of threo- and meso-isomers, followed by treatment with benzoyl chloride to obtain the target compound.

## Results and discussion

Our approach to the synthesis of the natural product threo-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol (1) and its meso-isomer (2)

threo-( $\pm$ )-9,9-Dibenzoylsecoisolariciresinol (1)
is outlined in Scheme 2. It was anticipated that condensation of 3 with diethyl succinate would furnish $\mathbf{4}$, which after the second condensation of with $\mathbf{3}$ to form $(E)-5$ and subsequent hydrogenation with a $10 \%$ palladium on charcoal catalyst, gave a readily separable mixture of meso-secoisolariciresinol (6a) and threo- $( \pm)$-secoisolariciresinol (6b). Acylation of meso- $( \pm)-\mathbf{6 a}$ or threo- $( \pm)-\mathbf{6 b}$ with benzoyl chloride produced meso- $\pm$ )-9,9-dibenzoylsecoisolariciresinol (2) or threo-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol (1).

Our investigations began with cheap vanillin as a raw material. The 4-hydroxyl group of vanillina was protected with benzyl chloride to afford the product $\mathbf{3}$. Compound $\mathbf{3}$ underwent a Stobbe condensation with diethyl succinate in the presence of sodium ethoxide in ethanol to produce compound 4. The trans- $(E)$-configuration of the olefinic double bond was evident from the appearance of the deshielded vinylic proton at $\delta 7.87$ in its ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{19}$ Compound 4 was methylated with diazomethane in methanol to yield the diester 7. The second Stobbe condensation of 7 with $\mathbf{3}$ in methanol with the presence of sodium methoxide yielded compound $\mathbf{8}$. The deshielded vinylic proton at $\delta 7.96$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of 8 again indicated the trans- $(E)$-configuration for both the olefinic double bonds. ${ }^{20}$ Compound $\mathbf{8}$ was again methylated to produce a diester 9 . Treatment of 9 with $\mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}$ afforded the unsaturated diol 5, followed by hydrogenation with a $10 \%$ palladium on charcoal catalyst to produce a readily separable mixture (approximate 1) of diols meso-secoisolariciresinol (6a) and threo- $\pm$ )-secoisolariciresinol ( $\mathbf{6 b}$ ). threo- $( \pm)$ - $\mathbf{6 b}$ had consistently larger $\mathrm{R}_{\mathrm{f}}$ values than those of the corresponding meso-6a, and each pair was easily separated by flash column chromatography over silica gel. The configuration of threo$( \pm)-\mathbf{6 b}$ was agreement with those reported in the literature. ${ }^{21}$

The 4-hydroxyl group of meso-( $\pm$ )- $\mathbf{6 a}$ or threo- $( \pm)-\mathbf{6 b}$ was protected with benzyl chloride to afford meso- $( \pm)-\mathbf{1 0 a}$ or threo$( \pm)-10 \mathrm{~b}$. After acylation of meso- $( \pm)-\mathbf{1 0 a}$ or threo- $( \pm) \mathbf{- 1 0 b}$ with benzoyl chloride, and then hydrogenation, natural product meso-( $\pm$ )-9,9-Dibenzoylsecoisolariciresinol (2) or threo-( $\pm$ )-9,9-Dibenzoylsecoisolariciresinol (1) was obtained

meso-(土)-9,9-Dibenzoylsecoisolariciresinol (2)

[^0]

Scheme 2


## Scheme 3

(Scheme 4). The spectroscopic data of natural product $\mathbf{1}$ was in agreement with those found in the literature ${ }^{12}$.

In summary, we have developed an efficient and practical synthesis of a dibenzylbutyl benzoate lignan based on a Stobbe reaction to construct the skeleton of lignan. The natural product threo-( $\pm$ )-9,9-Dibenzoylsecoisolariciresinol(1) and its isomer meso-( $\pm$ )-9,9-Dibenzoylsecoisolariciresinol (2) were obtained by this route for the first time.

## Experimental

Melting points were taken on Gallenkamp melting point apparatus which are uncorrected. IR spectra were recorded on a Nicolet NEXUS 670 FT-IR. The ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ spectra were recorded on a Bruker AM-500 MHz spectrometers. Mass spectra were recorded on a $Z A B-H S$ spectrometer. HRMS were obtained on a Bruker Daltonics APEXII47e spectrometer. Flash column chromatography was performed on silica gel (200-300 mesh) and TLC inspections on silica gel $\mathrm{GF}_{254}$ plates.
4-Benzyloxy-3-methoxybenzaldehyde (3): A mixture of Vanillin ( $60.8 \mathrm{~g}, 400 \mathrm{mmol}$ ), benzyl bromide and anhydrous potassium carbonate ( $83.2 \mathrm{~g}, 400 \mathrm{mmol}$ ) in acetone were stirred overnight at room temperature. The reaction mixture was filtered, and the solvent was removed in vacuo. The residue was crystallised from EtOH to give the compound $\mathbf{3}$ as yellow crystals ( $92.0 \mathrm{~g}, 95 \%$ ). m.p. $65-67^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right) \delta: 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.16(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 6.87-7.54(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCHO})$.
(E)-2-(4'-benzyloxy-3'-methoxybenzylidene)succinic acid (4): The compound 3 ( $72.6 \mathrm{~g}, 300 \mathrm{mmol}$ ) and diethylsuccinate ( 52.2 g , $300 \mathrm{mmol})$ were added to a solution of $\mathrm{NaOEt}(40.8 \mathrm{~g}, 600 \mathrm{mmol})$ in $\mathrm{EtOH}(500 \mathrm{~mL})$. The mixture was heated under reflux for 4 h , and the ethanol was removed. The residue was cooled and acidified with HCl ( 5 N ). This was then extracted with EtOAc $(3 \times 70 \mathrm{~mL})$. The EtOAc layer was then re-extracted with saturated solution of $\mathrm{NaHCO}_{3}$ $(300 \mathrm{~mL})$. Acidification of the aq. $\mathrm{NaHCO}_{3}$ extract with $\mathrm{HCl}(5 \mathrm{~N})$ provided an oily layer, which was again extracted with EtOAc ( $3 \times$ 70 mL ). The combined organic layer was dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. This residue was added to a solution of $20 \%$ aqueous $\mathrm{NaOH}(500 \mathrm{~mL}$ ) and refluxed for 3 h . After cooling to room temperature, the mixture was washed with EtOAc ( $3 \times 70 \mathrm{~mL}$ ). The solution was decolourised with active carbon and the mixture was acidified with $\mathrm{HCl}(5 \mathrm{~N})$ to yield white solids. The crude product was crystallised from EtOH to give the diacid $\mathbf{4}$ as a yellow crystal $(120.0 \mathrm{~g}, 83 \%)$. m.p. $131-133^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 3.57$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), 3.86 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 5.15 (s, 2H, $\mathrm{ArCH}_{2} \mathrm{O}$ ), 6.68-7.43 (m, 8H, ArH), $7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{C}) . \mathrm{EI}-\mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 342\left(\mathrm{M}^{+}, 26\right)$, 324 (12), 297 (27), 175 (16), 91 (100).
(E)-Dimethyl 2-(4'-benzyloxy-3'-methoxybenzylidene)succinate (7): The diacid $4(68.4 \mathrm{~g}, 200 \mathrm{mmol})$ was added to an ice-cold solution of excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred for 12 h , and concentrated in vacuo. Flash column chromatography of the residue gave the diester 7 as a yellow oil ( $71.8 \mathrm{~g}, 97 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta: 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.83$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 6.68-7.45(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.88$


## Scheme 4

( $\mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{C}$ ). EI-MS ( $\mathrm{m} / \mathrm{z}, \%$ ): $370\left(\mathrm{M}^{+}, 36\right), 338$ (18), 307 (14), 175 (23), 91 (100).
Trans-(E)-2,3-dis(4'-benzyloxy-3'-methoxybenzylidene)succinic acid (8): Diester $7(37.1 \mathrm{~g}, 100 \mathrm{mmol})$ on Stobbe condensation (following the above mentioned procedure) with compound $\mathbf{3}(24.2 \mathrm{~g}$, 100 mmol ) gave a light-yellow solid which was purified by recrystallisation from MeOH to yield product $8(42.5 \mathrm{~g}, 75 \%)$. m.p. $151-$ $153{ }^{\circ} \mathrm{C}$. IR (KBr, $\mathrm{cm}^{-1}$ ) v: 3350, 2900, 1740, 1496, 1241, 1042. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ) $\delta: 3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right.$ ), $5.16(\mathrm{~s}, 4 \mathrm{H}, 2 \times$ $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 6.78-7.44(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArH}), 7.96(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}=\mathrm{C}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 55.7\left(2 \times \mathrm{OCH}_{3}\right), 70.7\left(2 \times \mathrm{ArCH}_{2}\right), 112.7$, 113.1, 123.3, 124.9, 127.2, 127.3, 128.0, $128.6(2 \times \mathrm{ArCH}=C), 136.4$ $(2 \times \mathrm{ArCH}=\mathrm{C}), 144.2,149.2,150.1,172.7(2 \times \mathrm{C}=\mathrm{O})$. EI-MS ( $\mathrm{m} / \mathrm{z}$, \%): $566\left(\mathrm{M}^{+}, 2.1\right), 549$ (4.3), 325 (11), 175 (35), 151 (5.2), 91 (100). HRMS Calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 567.2014 . Found: 567.2012.
Trans-(E)-dimethyl 2,3-bis(4'-benzyloxy-3'-methoxybenzylidene)su ccinate (9): Following the procedure described for the preparation of 7, and starting with the diacid $\mathbf{8}(28.3 \mathrm{~g}, 50 \mathrm{mmol})$, gave a light-yellow solid which was purified by recrystallisation from $10 \%$ hexane in EtOAc to yield the diester 9 ( $28.0 \mathrm{~g}, 94 \%$ ). m.p. $143-146^{\circ} \mathrm{C}$. IR ( KBr , $\left.\mathrm{cm}^{-1}\right) v: 3010,2951,2842,1710,1600,1513,1427,916 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 3.67\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.75(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{COOCH}_{3}\right), 5.15\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{O}\right), 6.79-7.41(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArH}), 7.87$ (s, $2 \mathrm{H}, 2 \times \mathrm{ArCH}=\mathrm{C}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 52.5\left(2 \times \mathrm{OCH}_{3}\right)$, $55.8\left(2 \times \mathrm{OCH}_{3}\right), 70.8\left(2 \times \mathrm{ArCH}_{2}\right), 112.4,113.2,124.5,124.6,127.3$, 127.9, 128.1, $128.7(2 \times \mathrm{ArCH}=C), 136.6(2 \times \mathrm{ArCH}=\mathrm{C}), 142.4$, 149.3, 149.7, $167.8(2 \times \mathrm{C}=\mathrm{O})$. HRMS Calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 595.2327. Found: 595.2325.

Trans-(E)-dimethyl 2,3-bis(4'-benzyloxy-3'-methoxybenzylidene) -1,4-butanediol (5): Diester 9 ( $17.8 \mathrm{~g}, 30 \mathrm{mmol}$ ) in dry THF was added dropwise during 1 h to a mixture of $\mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}(3: 1,6.0 \mathrm{~g})$, in dry THF and stirred under nitrogen at room temperature. Then the reaction was quenched by ice water and filtered. The filtrate was dried by $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Flash column chromatography of the residue gave trans-(E)-diol $5(13.7 \mathrm{~g}, 85 \%)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ $v: 3320,2931,1512,1247,1032 .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 3.74$ $\left(\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.12-4.13\left(\mathrm{~d}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 5.12(\mathrm{~s}, 4 \mathrm{H}$, $\left.2 \times \mathrm{ArCH}_{2} \mathrm{O}\right), 6.63(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}), 6.79-7.44(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 55.7\left(2 \times \mathrm{OCH}_{3}\right), 66.6\left(2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 70.8$ $\left(2 \times \mathrm{ArCH}_{2} \mathrm{O}\right), 111.5\left(\mathrm{C}-2, \mathrm{C}-2^{\prime}\right), 113.6\left(\mathrm{C}-5, \mathrm{C}-55^{\prime}\right), 121.1$ (C-6, C-6'), 127.2, 127.4, 127.8, 128.5, $128.8(2 \times \mathrm{ArCH}=C), 129.8,136.9(2 \times$ $\left.\mathrm{ArCH}=\mathrm{C}), 137.5(\mathrm{C}-1, \mathrm{C}-1)^{\prime}\right), 147.7\left(\mathrm{C}-4, \mathrm{C}-4{ }^{\prime}\right), 149.3$ (C-3, C-3'). HRMS Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$: 556.2694 . Found: 556.2699.

Meso-secoisolariciresinol, 6a and threo- $\pm$ )-secoisolariciresinol ( $\mathbf{6 b}$ ): Diol 5 ( $13.5 \mathrm{~g}, 25 \mathrm{mmol})$ in $\mathrm{MeOH}(250 \mathrm{~mL})$ was stirred under hydrogen atmosphere for 36 h in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(5.6 \mathrm{~g})$. The reaction mixture was filtered through a pad of Celite. Then,
the solvent was removed in vacuo and flash column chromatography of the residue gave the colourless oil meso-secoisolariciresinol 6a ( $3.69 \mathrm{~g}, 40.7 \%$ ) and a white crystal threo-( $\pm$ )-secoisolariciresinol 6b ( $4.1 \mathrm{~g}, 45.2 \%$ ).
Meso-secoisolariciresinol 6a: IR (KBr/cm ${ }^{-1}$ ): 3310, 2910, 1498, 1251, 1042, $928 .{ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 500 \mathrm{MHz}$ ) $\delta: 1.90-2.01$ (m, $2 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{CH}$ ), 2.57-2.62 (m, 4H, $2 \times \mathrm{ArCH}_{2} \mathrm{CH}$ ), 3.41 (dd, 2 H , $\left.J=11.0,3.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.52\left(\mathrm{dd}, 2 \mathrm{H}, J=11.0,6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 6.62-6.74(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}){ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}$, $125 \mathrm{MHz}) \delta: 33.2\left(\mathrm{C}-7, \mathrm{C}^{-7}\right)$, $44.6\left(\mathrm{C}-8, \mathrm{C}-8^{\prime}\right), 55.3\left(2 \times \mathrm{OCH}_{3}\right), 62.2$ (C-9, C-9'), 112.5 (C-2, C-2'), 114.5 (C-5, C-5'), 121.6 (C-6, C-6'), 132.7 (C-1, C-1'), 144.6 (C-4, C-4'), 147.3 (C-3, C-3'). HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 380.2068$. Found: 380.2073 .

Threo-( $\pm$ )-secoisolariciresinol 6b: M.p. $127-128^{\circ} \mathrm{C}$. IR (KBr/ $\left.\mathrm{cm}^{-1}\right): 3354,2910,1512,1240,1032,928$. ${ }^{1} \mathrm{H}$ NMR (acetone $-d_{6}$, 125 MHz ) $\delta: 1.86-1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}\right.$ ), 2.58-2.70 (m, 4H, $2 \times$ $\mathrm{ArCH}_{2} \mathrm{CH}$ ), 3.49 (dd, $2 \mathrm{H}, \mathrm{J}=11.0,4.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$ ), 3.62 (dd, 2 H , $\left.J=11.0,3.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.71\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 6.55-6.68(\mathrm{~m}, 6 \mathrm{H}$, ArH). ${ }^{13} \mathrm{C}$ NMR (acetone- $\left.d_{6}, 125 \mathrm{MHz}\right) \delta: 36.2$ (C-7, C-7'), 44.8 (C-8, $\left.\mathrm{C}-8^{\prime}\right), 56.3\left(2 \times \mathrm{OCH}_{3}\right), 61.4\left(\mathrm{C}-9, \mathrm{C}-9^{\prime}\right), 113.5\left(\mathrm{C}-2, \mathrm{C}-2^{\prime}\right), 115.6$ (C-5, C-5'), 122.5 (C-6, C-6'), 133.8 (C-1, C-1'), 145.6 (C-4, C-4'), 148.3 (C-3, C-3'). HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$: 380.2068. Found: 380.2065 . The data are consistent with the literature. ${ }^{21}$
Meso-2,3-bis(4'-benzyloxy-3'-methoxybenzyl)-1,4-butanediol (10a): Following the procedure described for the preparation of 3 , and starting with the diol 6 a ( $3.62 \mathrm{~g}, 10 \mathrm{mmol}$ ), compound 10a was obtained as a yellow oil ( $4.9 \mathrm{~g}, 90 \%$ ). IR ( $\mathrm{KBr} / \mathrm{cm}^{-1}$ ): 3293, 2925, $1488,1246,1037,931 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 2.01-2.10(\mathrm{~m}$, $\left.2 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{CH}\right), 2.69-2.76\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{CH}\right), 3.54-3.56(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.60-3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.84\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$, $5.10\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{O}\right), 6.62-6.80(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.27-7.39$ $(\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 33.4(\mathrm{C}-3, \mathrm{C}-4), 43.9$ $\left(\mathrm{C}^{\prime} 7^{\prime}, \mathrm{C}-7^{\prime \prime}\right), 56.1\left(2 \times \mathrm{OCH}_{3}\right), 60.9(\mathrm{C}-1, \mathrm{C}-4), 71.3\left(2 \times \mathrm{ArCH}_{2} \mathrm{O}\right)$, 73.3 (C-2, C-5), 113.0 (C-2', C-2"), 114.4 (C-5', C-5"), 121.0 (C-6', C-6"), 127.3, 127.8, 128.5, 133.7 ( (-1', C-1"), 137.4, 146.6 (C-4', $\left.\mathrm{C}-4^{\prime \prime}\right), 149.7\left(\mathrm{C}-3^{\prime}, \mathrm{C}-3^{\prime \prime}\right)$. HRMS Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$: 560.3007. Found: 560.3012.

Threo-( $\pm$ )-2,3-bis(4'-benzyloxy-3'-methoxybenzyl)-1,4-butanediol (10b): Following the procedure described for the preparation of 3 , and starting with the diester $\mathbf{6 b}(3.6 \mathrm{~g}, 10 \mathrm{mmol})$, compound $\mathbf{1 0 b}$ was obtained as a yellow oil ( $4.8 \mathrm{~g}, 89 \%$ ). IR ( $\mathrm{KBr} / \mathrm{cm}^{-1}$ ): 3383, 2921,1521, $1245,1037,928 .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 1.85-1.95(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{ArCH}_{2} \mathrm{CH}\right), 2.62-2.67\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{CH}\right), 3.54-3.56(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.60-3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.80\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 5.13$ (s, $4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{O}$ ), $6.61-6.71(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.27-7.37(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 35.9$ (C-3, C-4), 45.0 (C-7', $\left.\mathrm{C}-7^{\prime \prime}\right), 56.1\left(2 \times \mathrm{OCH}_{3}\right), 63.4(\mathrm{C}-1, \mathrm{C}-4), 71.3\left(2 \times \mathrm{ArCH}_{2} \mathrm{O}\right), 113.0$
(C-2', C-2"), 114.4 (C-5', C-5"), 121.0 (C-6', C-6"), 127.3, 127.8, 128.5, 133.9 ( $\mathrm{C}-1^{\prime}, \mathrm{C}^{\prime \prime}$ ), 137.4, 146.7 (C-4', C-4"), 149.8 (C-3', $\left.\mathrm{C}-3^{\prime \prime}\right)$. HRMS Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$: 560.3007. Found: 560.3012.

Meso-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol (2): Benzoyl chloride $(0.9 \mathrm{~g}, 6 \mathrm{mmol})$ in dry dichloromethane $(10 \mathrm{~mL})$ was added dropwise during 1 h to the mixture of diol $\mathbf{1 0 a}(1.6 \mathrm{~g}, 3 \mathrm{mmol})$, pyridine $(0.5 \mathrm{~g}$, 6 mmol ) and dry dichloromethane ( 20 mL ). The mixture was stirred under nitrogen at room temperature for 5 h , and then filtered. The filtrate was concentrated in vacuo. Flash column chromatography of the residue gave compound $\mathbf{2}$ as a white oil ( $1.5 \mathrm{~g}, 89 \%$ ). IR $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right)$ : 3448, 2928, 2842, 1712, 1605, 1515, 1450, 1265, 1035. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 2.28-2.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}\right), 2.67-2.75(\mathrm{~m}$, $\left.4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{CH}\right), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}$, H-9b'), 4.52 (m, 2H, H-9a, H-9a'), 6.53-6.78 (m, 6H, ArH), 7.45-8.05 $(\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 33.6$ (C-7, C-7'), 40.5 (C-8, C-8'), $55.3\left(2 \times \mathrm{OCH}_{3}\right), 66.5\left(\mathrm{C}-9, \mathrm{C}-9^{\prime}\right), 110.6\left(\mathrm{C}-2, \mathrm{C}-2^{\prime}\right)$, 113.8 (C-5, C-5'), 120.7 (C-6, C-6'), 128.4 (C-13, C-13', C-15, C-15'), 129.2 (C-12, C-12', C-16, C-16'), 130.1 (C-11, C-11'), 130.5 (C-1, C-1'), 133.2 (C-14, C-14'), 143.3 (C-4, C-4'), 145.8 (C-3, C-3'), 166.5 (C-10, C-10'). HRMS Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{NO}_{8}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 588.2592$. Found: 588.2594.
Threo-( $\pm$ )-9,9-dibenzoylsecoisolariciresinol (1): Following the procedure described for the preparation of $\mathbf{2}$, and starting with the diester $\mathbf{1 0 b}(1.6 \mathrm{~g}, 3 \mathrm{mmol})$, compound $\mathbf{1}$ was obtained as a white oil $(1.6 \mathrm{~g}, 92 \%)$. IR ( $\mathrm{KBr} / \mathrm{cm}^{-1}$ ): 3420, 2930, 2856, 1715, 1605, 1512, $1454,1270,1031 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 2.30-2.41(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}\right), 2.75-2.88\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{CH}\right), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$, 4.33 (m, 2H, H-9b, H-9b'), 4.52 (m, 2H, H-9a, H-9a'), 6.53-6.80 (m, $6 \mathrm{H}, \mathrm{ArH}), 7.43-8.05(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ §: 35.2 (C-7, C-7'), 40.8 (C-8, C-8'), $55.6\left(2 \times \mathrm{OCH}_{3}\right), 65.1(\mathrm{C}-9$, C-9'), 111.4 (C-2, C-2'), 114.7 (C-5, C-5'), 121.5 (C-6, C-6'), 128.6 (C-13, C-13', C-15, C-15'), 129.4 (C-12, C-12', C-16, C-16'), 130.1 (C-11, C-11'), 131.6 (C-1, C-1'), 133.1 (C-14, C-14'), 144.0 (C-4, C-4'), 146.5 (C-3, C-3'), 166.5 (C-10, C-10'). HRMS Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{NO}_{8}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right): 588.2592$. Found: 588.2597. . The data are consistent with the literature. ${ }^{12}$ The data of $\mathbf{1}$ in the literature: ${ }^{12 \mathrm{jij}}$ IR ( $\mathrm{KBr} /$ $\left.\mathrm{cm}^{-1}\right): 2923,2853,2360,2338,1714,1603,1514,1454,1374,1270$, $1115,1031,756,712 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 2.36(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}\right), 2.81\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2} \mathrm{CH}\right), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$, 4.35 (dd, 2H, $J=11.2,4.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}, \mathrm{H}-9 \mathrm{~b}$ '), 4.54 ( $2 \mathrm{H}, \mathrm{dd}, J=11.2$, $\left.5.9 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}, \mathrm{H}-9 \mathrm{a}^{\prime}\right), 5.45(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 6.53$ (d, $2 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2$, H-2'), 6.61 (dd, 2H, $\left.J=8.0,1.8 \mathrm{~Hz}, \mathrm{H}-6, \mathrm{H}-6^{\prime}\right), 6.79$ ( $2 \mathrm{H}, \mathrm{dd}, J=8.0$, $1.8 \mathrm{~Hz}, \mathrm{H}-5, \mathrm{H}-5^{\prime}$ ), 7.43 (t, 4H, J=7.7 Hz, H-14, H-14', H-16, H-16'), 7.57 (t, 2H, $\left.J=6.5 \mathrm{~Hz}, \mathrm{H}-15, \mathrm{H}-15^{\prime}\right), 8.01(\mathrm{~d}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-13$, $\mathrm{H}-13$ ', $\mathrm{H}-17, \mathrm{H}-17$ '). ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) ~ \delta: 35.1$ (t, C-7, C-7'), 40.4 (d, C-8, C-8'), 55.6 (c, C-10, C-10'), 65.0 (t, C-9, C-9'), 111.2 (d, C-2,C-2'), 114.2 (d, C-5, C-5'), 121.7 (d, C-6, C-6'), 128.4 (d, C-14, C-14'; C-16, C-16'), 129.5 (d, C-13, C-13'; C-17, C-17'), 130.1 (s,

C-12,C-12'), 131.5 (s, C-1, C-1'), 133.0 (d, C-15, C-15'), 144.0 (s, C-4,C-4'), 146.5 (s, C-3, C-3'), 166.5 ( $\mathrm{s}, \mathrm{C}-11, \mathrm{C}-11^{\prime}$ ).

This work was financially supported by Taishan Scholar Project of Shandong Province (NO.2005011036), Specialised Research Fund for the Doctoral Program of Higher Education of China (NO.20093719120004), and Open Foundation of Chemical Engineering Subject, Qingdao University of Science \& Technology, China.

Received 24 June 2010; accepted 6 September 2010
Paper 1000221 doi: $10.3184 / 030823410 X 12869011963454$ Published online 24 November 2010

## References

1 R.S. Ward. Nat. Prod. Rep., 1999, 16, 75.
2 K. Struijs, J.P. Vincken, R.Verhoef, A.G.J. Voragen and H. Gruppen, Phytochemistry, 2008, 69, 1250.
3 G.L. Zhang, N. Li, Y.H. Wang, Y.T. Zheng, Z. Zhang and M.W. Wang, J. Nat. Prod., 2007, 70, 662.

4 B.G. Wang, R. Ebel, C.Y. Wang, R.A. Edrada, V. Wray and P. Proksch, J. Nat. Prod., 2004, 67, 682.

5 M. Saleem, H.J. Kim, M.S. Ali and Y.S. Lee, Nat. Prod. Rep., 2005, 22, 696.

6 R.A. Davis, A.R. Carroll, S. Duffy, V.M. Avery, G.P. Guymer, P.I. Forster and R.J. Quinn, J. Nat. Prod., 2007, 70, 1118.
7 K. Prasad, Atherosclerosis, 2005, 179, 269.
8 K.R. Elfahmi, S. Batterman, R. Bos, O. Kayser, H.J. Woerdenbag and W.J. Quax, Biochem. Systematics Ecol., 2007, 35, 397.

9 J.L. Billinsky, M.R. Marcoux and E.S. Krol, Chem. Res. Toxicol., 2007, 20, 1352.
10 E. Eich, H. Pertz, M. Kaloga, J. Schula, M.R. Fesen, A. Mazumder and Y. Pommier, J. Med. Chem., 1996, 39, 86.

11 Y. Kitamura, M. Yamagishi, K. Okazaki, H.Y. Son, T. Imazawa, A. Nishikawa, T. Iwata, Y. Yamauchi, M. Kasai, K. Tsutsumi and M. Hirose, Cancer Lett., 2003, 200, 133.
12 N.E.J. Vazdekis, H. Chavez, A. Estevez-Braun and A.G. Ravelo, J. Nat. Prod., 2009, 72, 1045.
13 P.C. Eklund, A.I. Riska and R.E. Sjoholm, J. Org. Chem., 2002, 67, 7544.
14 J. Fischer, A.J. Reynolds, L.A. Sharp and M.S. Sherburn, Org. Lett., 2004, 6, 1345.
15 T. Assoumatine, P.K. Datta, T.S. Hooper, B.L. Yvon, and J.L. Charlton, J. Org. Chem., 2004, 69, 4140.

16 A. Pelter, R.S. Ward, D.M. Jones and P. Maddocks, Tetrahedron Asymmetry, 1992, 3, 239.
$17 \overline{\text { M.H. Gezginci and B.N. Timmermann, Tetrahedron Lett., 2001, 42, } 6083 .}$
18 V. Rao and S.K. Chattopadhyay, J. Org. Chem., 1990, 55, 1427.
19 J. Liu and N.R. Brook, Org. Lett., 2002, 4, 3521.
20 H. Miyazaki, H. Ohmizu and T. Ogiku, Org. Process Res. Dev., 2009, 13, 760.

21 H. Karikome, Y. Mimaki and Y. Sashida, Phytochemistry, 1991, 30, 315.


[^0]:    * Correspondent. E-mail: sdjndb@163.com

